Strong Conditional Oblivious Transfer and Computing on Intervals

Vladimir Kolesnikov Joint work with Ian F. Blake

University of Toronto

Motivation for the Greater Than Predicate

HAHA!! I'll set

y := x − 0.01

- A: I would like to buy tickets to Cheju Island.
- B: My prices are so low, I cannot tell them! Tell me how much money you have (x), and if it's more than my price (y), I'd sell it to you for y.
- A: We better securely evaluate Greater Than (GT).

GT Uses: Auction systems Secure database mining Computational Geometry

Previous work on GT

- Yao's Two Millionaires
- Yao's Garbled Circuit Rogaway, 1991 Naor, Pinkas, Sumner, 1999 Lindell, Pinkas, 2004
- Sander, Young, Yung, 1999
- Fischlin, 2001
- Many others

Our Model

A: Let's do it in **one round** – I hate waiting!

B: Let's be **Semi-Honest**.

That means we will not deviate from our protocol. We can, however, try to learn things we aren't supposed to by observing our communication.

- A: Also, I will have unlimited computation power.
- B: That sounds complicated. Most efficient solutions won't work (e.g. garbled circuit).

Tools – Homomorphic Encryption

Encryption scheme, such that:

Given E(m₁), E(m₂) and public key, allows to compute E(m₁ \otimes m₂)

We will need:

- Additively homomorphic (\otimes = +) schemes
- Large plaintext group

The Paillier scheme satisfies our requirements

Oblivious Transfer (OT)

Learn: S_b

Learn: nothing

Strong Conditional OT (SCOT)

Learn: $S_{Q(x,y)}$

Learn: nothing

Q-SCOT

Is a generalization of:

- COT of Di Crescenzo, Ostrovsky, Rajagopalan, 1999
- OT
- Secure evaluation of Q(x,y)

The GT-SCOT Protocol X₁, ..., X_n s₀, s₁, y₁, ..., y_n pub, pri **x₁**, ..., **x_n pub** x₁, ..., x_n pub $d = X_1 - Y_1, \dots, X_n - Y_n$ $f = X_1 \oplus Y_1, \dots, X_n \oplus Y_n$ $x \oplus y = (x-y)^2 = x-2xy+y$ γ : $\gamma_0 = 0$, $\gamma_i = 2\gamma_{i-1} + f_i$ f = 00100110...δ: $\delta_i = d_i + r_i (\gamma_i - 1)$ $\gamma = 0 0 0 1 2 4 9 19 38 \dots$ $\mu: \mu_{i} = \frac{1}{2} \left((S_{1} - S_{0}) \delta_{i} + S_{1} + S_{0} \right)$ $r(\gamma - 1) = r_1 r_2 0 r_3 r_4 r_5 r_6 r_7 ...$ $d+r(\gamma-1) = t_1 t_2 d_1 t_3 t_4 t_5 t_6 t_7 \dots$

 $\pi(\mu)$ $\mid S_j$

Interval-SCOT $x_1, x_2, s_0, s_1 \in D_S$ Х s_0 s_0 s_1 x_2 x_1 $-\mathbf{U}$ 1 J $s_0 = a_1 + b_1 = a_2 + b_2$ $s_1 = a_2 + b_1$ $GT-SCOT(a_1|a_2?x < x_1)$ $GT-SCOT(b_1|b_2?x < x_2)$ ↓a_i+b_i

 $\sum_{i} s_{i?}$

Conclusions

- General and composable definition of SCOT
- SCOT solutions (GT, I, UI)
 - Simple and composable
 - Orders of magnitude improvement in communication (loss in computational efficiency in some cases)
 - Especially efficient for transferring larger secrets (e.g. ≈ 1000 bits)

Resource Comparison

Protocol	GT predicate		c -bit GT-SCOT, $c < \log N$		k-UI-SCOT	
	mod. mult.	comm.	mod. mult.	comm.	mod. mult.	comm.
F01	$8n\lambda$	$\lambda n \log N$	$32nc\lambda$	$4nc\lambda \log N$	$64kn\lambda^2$	$8kn\lambda^2\log N$
DOR99	8n	$4n \log N$	N/A	N/A	N/A	N/A
our work	$16n \log N$	$4n \log N$	$20n \log N$	$4n \log N$	$40kn\log N$	$8kn\log N$