
Strong Conditional Oblivious
Transfer and Computing on
Intervals

Vladimir Kolesnikov
Joint work with Ian F. Blake

University of Toronto

Motivation for the Greater Than Predicate

B: My prices are so low, I cannot tell them!
Tell me how much money you have (x), and if
it’s more than my price (y), I’d sell it to you for y.

HAHA!! I’ll set
y := x – 0.01

A: I would like to buy tickets to Cheju Island.

A: We better securely evaluate Greater Than (GT).

GT Uses:
Auction systems
Secure database mining
Computational Geometry

Previous work on GT

Yao’s Two Millionaires
Yao’s Garbled Circuit

Rogaway, 1991
Naor, Pinkas, Sumner, 1999
Lindell, Pinkas, 2004

Sander, Young, Yung, 1999
Fischlin, 2001
Many others

Our Model
A: Let’s do it in one round – I hate waiting!

B: Let’s be Semi-Honest.
That means we will not deviate from

our protocol. We can, however, try to
learn things we aren’t supposed to by
observing our communication.

A: Also, I will have unlimited computation power.
B: That sounds complicated. Most efficient solutions

won’t work (e.g. garbled circuit).

Tools – Homomorphic Encryption

Encryption scheme, such that:

Given E(m1), E(m2) and public key,
allows to compute E(m1 ⊗ m2)

We will need:
• Additively homomorphic (⊗ = +) schemes

• Large plaintext group

The Paillier scheme satisfies our requirements

Oblivious Transfer (OT)

Input: secrets s0, s1Input: bit b

Learn: sb Learn: nothing

Strong Conditional OT (SCOT)

Predicate Q(x,y) Input: y, secrets s0, s1Input: x

sQ(x,y)Learn: Learn: nothing

Q-SCOT
Is a generalization of:

COT of Di Crescenzo, Ostrovsky,
Rajagopalan, 1999
OT
Secure evaluation of Q(x,y)

The GT-SCOT Protocol
x1, …, xn s0, s1, y1, …, yn

pub, pri
x1, …, xn pub x1, …, xn pub

x1-y1, …, xn-ynx1⊕y1, …, xn⊕ynx1⊕y1, …, xn⊕ynx1⊕y1, …, xn⊕yn
d =

f =
γ: γ0 = 0, γi = 2γi-1+fif = 0 0 1 0 0 1 1 0 …

γ = 0 0 0 1 2 4 9 19 38 … δ: δi = di + ri (γi -1)

γ−1 = -1-1 0 1 3 8 18 37 …
r (γ−1) = r1r2 0 r3 r4r5 r6 r7 …

d+r (γ−1) = t1 t2 di t3 t4t5 t6 t7 …

µ: µi = ½ ((s1-s0)δi+s1+s0)

x⊕y = (x-y)2 =x-2xy+y

π(µ) π(µ)
sj

Interval-SCOT

a1 ∈R DS

s0 = a1+b1 = a2+b2

s1 = a2+b1
GT-SCOT(a1|a2 ? x<x1)
GT-SCOT(b1|b2 ? x<x2)

x1, x2, s0, s1 ∈ DSx

ai+bj

Union of Intervals-SCOT
I1,…, Ik, s0, s1 ∈ DSx

I-SCOT(s11|s10 ? x∈ I1)
s1-s0 = si1-si0

s1 = ∑i si1

I-SCOT(sk1|sk0 ? x∈ Ik)

∑i si?

Conclusions

General and composable definition of
SCOT
SCOT solutions (GT, I, UI)

Simple and composable
Orders of magnitude improvement in
communication (loss in computational
efficiency in some cases)
Especially efficient for transferring larger
secrets (e.g. ≈1000 bits)

Resource Comparison

	Strong Conditional Oblivious Transfer and Computing on Intervals
	Motivation for the Greater Than Predicate
	Previous work on GT
	Our Model
	Tools ? Homomorphic Encryption
	Oblivious Transfer (OT)
	Strong Conditional OT (SCOT)
	Q-SCOT
	The GT-SCOT Protocol
	Interval-SCOT
	Union of Intervals-SCOT
	Conclusions
	Resource Comparison

